%0 Journal Article %T 基于得分归一化和系统融合的语音关键词检测方法<br>Keyword Spotting based on Score Normalization and System Combination %A 李鹏 %A 屈丹 %J 数据采集与处理 %D 2017 %R 10.16337/j.1004-9037.2017.02.016 %X 为了有效利用不同关键词检测系统的互补性,解决不同系统检测结果置信度得分不在同一范围的问题,提出了一种基于得分规整和系统融合的语音关键词检测方法。首先,为了克服连续语音识别系统中因剪枝错误而引起的关键词丢失问题,应用了关键词相关的软Beam宽度剪枝策略裁剪词图;其次,在系统融合前采用得分归一化方法,使得不同系统关键词检测结果置信度得分在同一范围;最后,通过系统融合处理将不同系统的关键词输出进行整合,得到最终的关键词检测结果。实验结果表明,经过得分归一化处理后,关键词检测性能的实际查询词权重代价(Actual term-weighted value, ATWV)平均相对提升30%;系统融合后关键词的检测性能,相比于得分归一化处理后的最佳单一系统,得到了10%的提升。<br>To effectively use the complementarity of different keyword spotting systems and solve the problem that the confidence scores from several different subsystems is not in the same range, a keyword spotting system based on score normalization and system combination is proposed. Firstly, to avoid keyword missing due to pruning errors in a large vocabulary recognition system, the keyword soft Beam pruning method is presented. Secondly, score normalization is needed to transform these confidence scores into a common domain, prior to combining them. Finally, after score normalization,the outputs are combined from different subsystems. Results show that score normalization methodology improves keyword search performance by 30% in average. Experiment also show that combining the outputs of diverse systems, system perform is 10% better than the best normalized KWS system. %K 关键词检测 %K 得分归一化 %K 系统融合 %K 软Beam剪枝< %K br> %K keyword spotting %K score normalization %K system combination %K soft Beam pruning %U http://sjcj.nuaa.edu.cn/ch/reader/view_abstract.aspx?file_no=201702016&flag=1