%0 Journal Article %T 一种基于INW-ESN的故障融合预测方法<br>A Prognostic Fusion Algorithm Based on the INW-ESN %A 王浩天 %A 单甘霖 %A 孙健 %A 杨文 %A 杜亚卿 %J 振动.测试与诊断 %D 2018 %R 10.16450/j.cnki.issn.1004-6801.2018.25 %X 针对传统方法对液压泵故障预测效果不佳的问题,提出了一种基于改进的Newman-Watts小世界 回声状态网络(improved Newman-Watts-echo state network, 简称INW-ESN)的故障融合预测方法。首先,对回声状态网络(echo state network,简称ESN)储备池结构进行优化,建立INW ESN基础预测模型,并重新定义邻接矩阵元素取值,以改善网络预测性能;其次,在此基础上建立故障融合预测模型,利用Dezert-Smarandache理论(Dezert-Smarandache theory,简称DSmT)将INW-ESN预测信息与液压泵性能退化模型信息进行融合,以提高预测精度;最后,通过对液压泵性能退化试验的应用分析,验证了该方法的有效性。<br>To solve the unsatisfying fault predicting effect of hydraulic pumps based on traditional algorithms, a novel fault fusion predicting method based upon the improved Newman-Watts(INW) is proposed. First, the structure of the reserve pool in traditional echo state network (ESN) is modified, and the INW-ESN fundamental predicting model is established. Neighboring matrix elements are redefined to improve the network performance. Furthermore, the fault fusion prognostic model is proposed. By the employment of Dezert-Smarandache theory (DSmT), the INW-ESN prognostic information and degradation model information are fused to increase predicting accuracy. Finally, the proposed method is verified by the application on the hydraulic pump performance degradation experiment. %K 故障预测 %K 回声状态网络 %K Dezert-Smarandache 理论 %K 液压泵< %K br> %K prognostic %K echo state network (ESN) %K Dezert-Smarandache theory (DSmT) %K hydraulic pump %U http://zdcs.nuaa.edu.cn/ch/reader/view_abstract.aspx?file_no=201801025&flag=1