%0 Journal Article %T 螺旋线插补速度规划及其插补参数求解方法<br>Spiral Interpolation Velocity Planning and Method of Solving Interpolation Parameters %A 王太勇 %A 尤中桐 %A 辛全琦 %J 天津大学学报(自然科学与工程技术版) %D 2018 %R 10.11784/tdxbz201803042 %X 提出了一种基于曲率特性与7段式S型加减速的阿基米德螺线插补算法.该插补算法的速度规划综合考虑了螺旋线变半径特性与曲率特性对运行速度的持续限制, 以求得到合理的速度规划结果.针对一般插补参数求解方法存在较高速度波动率的问题, 设计了一种基于改进牛顿迭代的预估-校正法.该方法以1阶泰勒展开法求解迭代初值, 然后利用改进牛顿迭代计算限定的次数得到精确值, 最后通过仿真对比与实验说明其优势与应用价值, 该方法可有效降低速度波动率, 且满足数控系统实时性要求.<br>This study aims to propose an Archimedes spiral interpolation algorithm based on curvature characteristics and 7-segment-S-type acceleration/deceleration. To obtain a reasonable velocity planning result,the constant limitation of the variable spiral radius and curvature characteristics related to the running velocity was considered in the velocity planning of this interpolation algorithm. To reduce the high rate of velocity fluctuation in the general method of solving interpolation parameters,a predictor-corrector method based on an improved Newton iteration was designed. The first-order Taylor expansion method was used to obtain the initial iteration value,and then the exact value was obtained by the improved Newton iteration. The advantages and application value of the predictor-corrector method are shown by simulation comparison and experiment. The method can effectively reduce the rate of velocity fluctuation and meet the real-time requirement of the computer numerical control(CNC)systems %K 阿基米德螺线 %K 加减速规划 %K 速度波动 %K 改进牛顿迭代< %K br> %K Archimedes spiral %K acceleration/deceleration?planning %K velocity fluctuation %K improved Newton iteration method %U http://journals.tju.edu.cn/zrb/oa/darticle.aspx?type=view&id=201811001