%0 Journal Article %T 一种基于Tree-LSTM的句子相似度计算方法<br>An Approach of Sentence Similarity on Tree-LSTM %A 杨萌 %A 李培峰 %A 朱巧明 %J 北京大学学报(自然科学版) %D 2018 %R 10.13209/j.0479-8023.2017.169 %X 摘要 在浅层句法树和依存关系树的基础上, 提出两种结构化特征: 基于短语的浅层句法树NPST和基于短语的依存树NPDT, 并将它们与Tree-LSTM模型相结合, 进行句子相似度计算。实验表明, 使用结构化特征和Tree-LSTM会带来性能的提升。<br>Abstract Based on the shallow tree and dependency tree, the authors introduce the structural representations, NPST (new phrase-based shallow tree) and NPDT (new phrase-based dependency tree) to Tree-LSTM to compute sentence similarity. Experimental results manifest that the proposed approach achieves a higher performance than the baseline. %K 句子相似度计算 %K Tree-LSTM %K 结构化特征< %K br> %K sentence similarity computation %K Tree-LSTM %K structural representations %U http://xbna.pku.edu.cn/CN/abstract/abstract3213.shtml