%0 Journal Article %T 云制造模式下采用Rough-ANP的机械设计知识优选推送策略<br>Optimal Selection Strategy of Mechanical Design Knowledge via Rough-anp in Cloud Manufacturing Environment %A 李雪瑞 %A 余隋怀 %A 初建杰 %J 机械科学与技术 %D 2018 %X 合理应用机械设计知识可以辅助提升创新设计的效率和质量。本文立足于云模式下的机械设计过程,提出基于行为-结构-知识的机械设计知识解构模型;提出一种云制造模式下基于Rough-ANP的机械设计知识优选推送策略,该方法充分结合了粗糙集理论(Rough set theory)在处理模糊性和不确定性方面的优势以及网络层次分析法(ANP)在处理多目标评估问题的优势。最后以电动铲运机设计为案例,验证了该机械设计知识优选推送策略的有效性。<br>Reasonable application of mechanical design knowledge can help improve the efficiency and quality of innovative design. The proposal based on the mechanical design process in cloud manufacturing, a deconstructive approach of design knowledge based on the behavior-structure-knowledge model is provided. And then, in this paper a novel optimal selection strategy of mechanical design knowledge based on Rough-ANP is proposed. The novel approach makes use of the strength of rough set theory in handling vagueness and uncertainty and the superiority of analytic network process (ANP) in non-independent hierarchy evaluation. Finally, a case is presented to demonstrate the effective auxiliary function of the novel approach %K 设计知识 %K 知识优选 %K 粗糙集 %K 网络层次分析法< %K br> %K design knowledge %K optimal selection of knowledge %K rough set theory %K analytic network process %U http://journals.nwpu.edu.cn/jxkxyjs/CN/abstract/abstract7117.shtml