%0 Journal Article %T 水下滑翔机海底驻留流体动力及稳定性仿真<br>Stability Simulation for Underwater Glider Parking on Seabed %A 张宝收 %A 宋保维 %A 毛昭勇 %A 姜军 %J 西安交通大学学报 %D 2016 %R 10.7652/xjtuxb201611008 %X 为了研究水下滑翔机的稳定驻留问题进行了数值仿真,包括定义滑翔机的2种失稳状态,即流体对驻留平台的作用力大于支架与海底的摩擦阻力时发生的滑移,以及流体对驻留平台的翻转力矩大于负浮力所能提供的最大约束力矩时发生的翻转,建立临界失稳的数学模型。考虑滑翔机与流场和海床的复合影响,运用Ansys CFX软件完成了数值仿真,仿真时研究了流场速度0~2 m/s、浮心到海底距离0.15~0.5 m以及不同攻角及方位角对驻留状态的影响,由此绘制了流体对驻留平台的作用力和力矩变化曲线。研究结果表明:浮心到海底距离小于0.3 m时壁面效应明显,有利于稳定驻留;滑翔机驻留攻角将极大影响驻留平台的稳定性;方位角在150°~155°时流体扰动最大。该结果可为滑翔机的设计定型和实际驻留研究提供参考。<br>To investigate the stability parking of an underwater glider, a numerical simulation is carried out. Two types of instability states of the underwater glider are defined, namely, “when the fluid drag exceeds the friction between the hydraulic support and the seabed, sideslip occurs” and “when the fluid torque relatively to the fulcrum exceeds the restoring torque from net gravity, side roll occurs”. The mathematical models of the instability state are established. Considering the coupling of the underwater glider between flow field and seabed, the numerical simulation is carried out with ANSYS-CFX. Under the conditions of different flow velocities (0.2 m/s), distances (0.15-0.5 m) and attitude angles, the curves of the fluid force and torque are completed. It reveals that when the distance between the buoyant and seabed is smaller than 0.3 m, wall effect is obvious, which is helpful in the stability of the glider, and attack angle of the glider greatly reduces the stability of the whole system; when azimuth angle is at 150°-155°, the disturbance of fluid is most obvious. The results can be used for practical design and parking experiment for a new underwater glider %K 水下滑翔机 %K 稳定驻留 %K 数值仿真< %K br> %K underwater glider %K stability parking %K numerical simulation %U http://zkxb.xjtu.edu.cn/oa/DArticle.aspx?type=view&id=201611008