%0 Journal Article %T 磨削弧区热源分布形状研究<br>Heat Source Profile in Grinding Zone %A 王德祥 %A 葛培琪 %A 毕文波 %A 郑传栋 %J 西安交通大学学报 %D 2015 %R 10.7652/xjtuxb201508019 %X 为了研究磨削力与磨削热耦合作用的残余应力场,基于磨粒轨迹分析和磨粒接触分析,采用概率统计的方法建立了磨削弧区热源分布模型。模型分析了磨削弧区热量分配关系,不需预先假设沿磨削弧总热源分布形状及热量分配比一致,即可获得磨削弧区热源分布形状,解决了以往热源分布形状常被假设为矩形和直角三角形,但矩形热源和直角三角形热源并不能准确地描述热源分布形状的问题。采用有限元法仿真分析了工件磨削温度场,采用热成像仪实测了磨削温度场,并将磨削温度场有限元仿真结果和热成像仪测量结果进行了对比分析,结果表明:有限元模拟结果与热成像仪测量结果具有很好的一致性,磨削弧区最高温度预测值与实测值之间的误差在2.24%~15.3%范围内;直角三角形热源并不能准确地描述磨削弧区热源分布形状;磨削弧区热源分布形状更接近四次多项式函数曲线。<br>A heat source distribution model in grinding zone is established with probability statistical method to reveal the residual stress field induced by the coupling of grinding force and grinding heat following grain trajectory analysis and grain contact analysis. Heat partition analysis in grinding zone is performed in the modeling of heat source distribution. Heat source profile was always assumed to be rectangular or triangular in the previous studies, however rectangular or triangular heat source can not describe the heat source profile accurately. On the assumption of uniform heat partition ratio in grinding zone and without providing profile of total heat source in advance, the heat source distribution model enables to obtain the heat source profile in grinding zone. Finite element method is used to simulate grinding temperature field. An infrared thermal imager is used to measure grinding temperature field. A comparison indicates that the simulations coincide well with the measurements of grinding temperature field, and the errors of the maximum temperature in grinding zone range from 2.24% to 15.3%. The heat source distribution in grinding zone approaches the profile of quartic polynomial curve %K 热源分布 %K 热源形状 %K 热量分配比 %K 磨削温度场< %K br> %K heat source distribution %K heat source profile %K heat partition ratio %K grinding temperature field %U http://zkxb.xjtu.edu.cn/oa/DArticle.aspx?type=view&id=201508019