%0 Journal Article %T 应用支持向量回归机探索发动机VSV调节规律<br>Exploration of engine VSV regulation law using support vector regression %A 曹惠玲 %A 阚玉祥 %A 薛鹏 %J 北京航空航天大学学报 %D 2018 %R 10.13700/j.bh.1001-5965.2017.0523 %X 摘要 发动机可调静子叶片(VSV)调节规律极其复杂,通过挖掘快速存取记录装置(QAR)数据对VSV调节规律进行了深入研究。首先,通过PW4077D发动机健康状态的QAR数据,建立基于粒子群优化(PSO)算法的支持向量回归机(SVR)模型,来探索VSV调节规律;然后,利用后续航班数据对PSO-SVR模型进行验证,并将验证结果与传统的PSO-BP神经网络模型进行对比;最后,应用PSO-SVR模型进行发动机故障诊断。研究结果表明:PSO-SVR模型的回归预测精度优于PSO-BP神经网络模型,能够准确反映VSV的调节规律。可将其用于发动机的状态监控和故障诊断,亦可为VSV控制系统设计提供参考。<br>Abstract:The engine variable stator vane (VSV) regulation law is extremely complex, and through mining quick access recorder (QAR) data, the VSV regulation law is studied. Firstly, the support vector regre-ssion (SVR) model based on particle swarm optimization (PSO) is established through the QAR data of PW4077D engine health condition to explore the regulation law of VSV. Then, the PSO-SVR model is validated by the subsequent flight data, and the verification results are compared with the traditional PSO-BP neural network model. Finally, the PSO-SVR model is applied to engine fault diagnosis. The results show that the regression prediction accuracy of the PSO-SVR model is better than that of the PSO-BP neural network model, and it can accurately reflect the VSV regulation rule. It can be used in the condition monitoring and fault dia-gnosis of engine, and can also provide reference for the design of VSV control system. %K 发动机可调静子叶片(VSV) %K 调节规律 %K 支持向量回归机(SVR) %K 粒子群优化(PSO)算法 %K 快速存取记录装置(QAR)数据 %K 故障诊断< %K br> %K engine variable stator vane (VSV) %K regulation law %K support vector regression (SVR) %K particle swarm optimization (PSO) algorithm %K quick access recorder(QAR) data %K fault diagnosis %U http://bhxb.buaa.edu.cn/CN/abstract/abstract14522.shtml