%0 Journal Article %T 基于白化变换及曲率特征的3维物体识别及姿态计算<br>Three-dimensional object recognition and posture calculations based on the whitening transformation and curvature characteristics %A 郑军 %A 魏海永 %J 清华大学学报(自然科学版) %D 2016 %R 10.16511/j.cnki.qhdxxb.2016.22.033 %X 为解决3维物体识别及姿态计算问题,提出了一种基于白化变换和改进U弦长曲率特征的图像识别及姿态计算方法。该方法首先提取物体的2维形状特征,然后使用白化变换对模板物体图像轮廓和目标物体图像轮廓进行处理,使处理后的轮廓点集仅存在旋转关系;根据改进后的U弦长曲率方法,求取两轮廓的曲率,并进行匹配。实验结果表明:该方法具备较好的仿射不变性,其识别速度达到58 ms/帧(CPU:2.3 GHz;内存:4 GB),识别率在无遮挡情况下达到了100%,姿态检测精度达到了1.5°。<br>Abstract:The whitening transformation and a U chord curvature are used to improve three-dimensional object recognition and posture calculation. The algorithm first extracts the shape characteristics of the object and then matches the contours of the target image with templates using the whitening transformation so that there is only a rotational relationship between the contour point sets. Then, the U chord curvature is improved to match the contours. Tests show that this method is affine invariant with a fast recognition speed which can reach 58 ms/frame (CPU: 2.3 GHz, RAM: 4 GB), a high recognition rate of 100% without shelter and a high detection accuracy of the posture calculation of 1.5°. %K 物体识别 %K 仿射不变 %K 白化变换 %K 曲率 %K 姿态计算 %K < %K br> %K object recognition %K affine invariant %K whitening transformation %K curvature %K posture calculation %U http://jst.tsinghuajournals.com/CN/Y2016/V56/I10/1025