%0 Journal Article %T 基于动态自适应策略的SSVEP快速目标选择方法<br>High-speed target selection method for SSVEP based on a dynamic stopping strategy %A 王春慧 %A 江京 %A 李海洋 %A 许敏鹏 %A 印二威 %A 明东 %J 清华大学学报(自然科学版) %D 2018 %R 10.16511/j.cnki.qhdxxb.2018.22.038 %X 基于稳态视觉诱发电位(SSVEP)的脑-机接口(BCI)系统具有高速、大指令集等优点,其信息传输率(ITR)的进一步提升对系统走向实际应用具有重要意义。该文采用包含35名被试的公开数据集,使用任务相关成分分析的分类模型识别脑电图数据中的SSVEP成分,进而运用基于Bayes估计的动态自适应策略评估分类结果的置信度。实验结果表明:动态自适应策略所得到的平均ITR(230 b/min)比传统的静态自适应策略(204 b/min)提升了12.7%,基于Bayes的动态自适应策略可以进一步提升SSVEP-BCI的性能。<br>Abstract:The steady-state visual evoked potential (SSVEP) based brain-computer interfaces (BCIs) are very fast and have huge instruction sets. However, the information transfer rate (ITR) needs to be increased for practical applications. A classification model of the task-relevant component analysis is used on a public data set of 35 subjects to recognize the SSVEP component in the electroencephalography data. A dynamic stopping strategy based on Bayes estimation is used to evaluate the confidence of the classification results. The results show that the dynamic stopping strategy (230 b/min) improves the average ITR by 12.7% compared with the conventional fixed stopping strategy (204 b/min). Thus, this result shows how SSVEP-BCI can be further improved by the Bayes-based dynamic stopping strategy. %K 脑-机接口 %K 稳态视觉诱发电位 %K 脑电图 %K 动态自适应策略 %K 任务相关成分分析 %K < %K br> %K brain-computer interface %K steady-state visual evoked potential %K electroencephalography %K dynamic stopping strategy %K task-related component analysis %U http://jst.tsinghuajournals.com/CN/Y2018/V58/I9/788