%0 Journal Article %T 应用于短时语音语种识别的时长扩展方法<br>Expanding the length of short utterances for short-duration language recognition %A 苗晓晓 %A 张健 %A 索宏彬 %A 周若华 %A 颜永红 %J 清华大学学报(自然科学版) %D 2018 %R 10.16511/j.cnki.qhdxxb.2018.25.015 %X 为解决待识别语音时长小于10 s时,语种识别性能急剧下降的问题,该文提出应用语音时域伸缩(time-scale modification,TSM)技术改变语音的长度(从而改变了语速),并保持其他频域信息不变。首先,对一段待识别语音,应用TSM技术转换为多条时域压缩和时域拉伸后的语音;其次,将这些不同语速的语音与原语音拼接起来,生成一个时长较长的语音;最后,送入语种识别系统进行识别。实验结果表明:所提出的语音时长扩展算法可以显著提升短时语音的语种识别性能。<br>Abstract:The language recognition (LR) accuracy is often significantly reduced when the test utterance duration is as short as 10 s or less. This paper describes a method to extend the utterance length using time-scale modification (TSM) which changes the speech rate without changing the spectral information. The algorithm first converts an utterance to several time-stretched or time-compressed versions using TSM. These modified versions with different speech rates are concatenated together with the original one to form a long-duration signal, which is subsequently fed into the LR system. Tests demonstrate that this duration modification method dramatically improves the performance for short utterances. %K 语种识别 %K 短时 %K 时域伸缩 %K 语速 %K < %K br> %K language recognition %K short-duration %K time-scale modification %K speech rate %U http://jst.tsinghuajournals.com/CN/Y2018/V58/I3/254