%0 Journal Article %T
%A 刘双双 %A 晒旭霞 %A 李丹 %A 李浩 %A 王鸣魁 %J 物理化学学报 %D 2016 %R 10.3866/PKU.WHXB201606072 %X 近年来,有机-无机卤化铅钙钛矿太阳电池的研究取得了突破性进展,公证记录电池效率22.1%,与CdTe薄膜电池(认证记录电池效率22.1%)和CuInGaSn(CIGS)(认证记录电池效率22.3%)薄膜电池技术相媲美,已经接近于市场上主导地位的晶体硅太阳电池(约25%)。有机卤化铅钙钛矿太阳电池器件的长期效率输出稳定性和含毒性Pb严重制约其实际应用。本文将讨论有机卤化铅钙钛矿太阳电池不稳定性因素和相应的解决方案,并对钙钛矿材料中Pb元素的取代工作和无机非铅钙钛矿材料及其太阳电池的研究进行了阐述与展望。
In recent years, significant breakthroughs have been achieved in the development of organicinorganic halide lead perovskite solar cells, with reported power conversion efficiency (PCE) values of up to 22.1%. This value is comparable to the efficiencies obtained using CdTe (22.1%) and CuInGaSn (CIGS) (22.3%) solar cells, and close to the value associated with crystalline silicon solar cells (approximately 25%). However, the limited long-term output efficiency stability and lead toxicity issues associated with organic-inorgan lead halide perovskite cells have limited their commercial applications. This review focuses on these issues and corresponding solutions for halide lead hybrid perovskite solar cells, and discusses advances and developments in Pb-free inorganic perovskite solar cells. We also examine the current body of knowledge regarding perovskite solar cells and discuss critical points and expectations regarding further performance improvements %U http://www.whxb.pku.edu.cn/CN/Y2016/V32/I9/2159