%0 Journal Article
%T
%A 张宏梅
%A 许利刚
%A 邱伟
%A 陈润锋
%A 黄维
%J 物理化学学报
%D 2018
%R 10.3866/PKU.WHXB201706304
%X ZnO电极修饰层具有高电子迁移率、高透光率、可低温制备且环境友好等优点在钙钛矿太阳能电池上获得了广泛应用。本文针对传统电极修饰层需要高温退火、透光率较低、制备过程繁琐,不利于高性能柔性钙钛矿电池器件制备等问题,系统综述了以ZnO材料作为电极修饰层的制备方法,综合分析了ZnO构筑的电极修饰层形貌、厚度、掺杂及复合对钙钛矿太阳能电池性能(如开路电压、电流密度、填充因子、光电转换效率等)的影响,展望了ZnO电极修饰层材料的未来发展趋势与其在钙钛矿太阳能电池中的应用前景。
ZnO has attracted extensive research in perovskite solar cells because of its high electron mobility, spectacular optical transparency, low-temperature processing, and ease of synthesis. Traditional electrode buffer layers used in perovskite solar cells have shown some drawbacks, such as high-temperature treatment, low transmittance, and complex fabrication procedures, which might not be fit for the further development of high-performance flexible perovskite solar cells. Here, we intend to give a systematic introduction to the fabrication and functions of ZnO electrode buffer layers (sol-gel method, pre-fabricated ZnO nanoparticle suspension, atomic layer deposition, spray pyrolysis, electrodeposition, chemical bath deposition, radio-frequency sputtering, metal organic chemical vapor deposition, and magnetron sputtering etc.). Particular attentions were paid to the understanding of the structure-property relations between the thickness, morphology, doping, and composition of ZnO electrode buffer layers and the performance of perovskite solar cells (open circuit voltage, current density, fill factor, power conversion efficiency, etc.). A perspective on the future development of ZnO electrode buffer layers and their applications in perovskite solar cells were also discussed in this review
%U http://www.whxb.pku.edu.cn/CN/Y2018/V34/I1/36