%0 Journal Article %T
%A 吴艳波 %A 毕军 %A 赵恒彦 %A 韩笑梅 %A 魏斌斌 %J 物理化学学报 %D 2015 %R 10.3866/PKU.WHXB201510131 %X 采用同轴静电纺丝法制备了碳包覆纳米SnO2中空纤维超级电容器电极材料.利用X射线衍射(XRD)、拉曼光谱、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和比表面积分析仪(BET)对材料进行表征.结果表明,纤维呈现中空形貌,平均直径为1 μm; SnO2颗粒均匀分布于碳壳结构中,平均粒径为3-15 nm.材料的比表面积为565 m2·g-1.在三电极体系中,当电流密度为0.25 A·g-1时,电极材料的比容量达397.5 F·g-1;在1.0A·g-1电流密度下,充放电循环3000次后比容量仍保持为初始值的88%.在对称型双电极体系中,电流密度为0.25 A·g-1时,电极材料的比容量达162.0 F·g-1,在1.0 A·g-1电流密度下,充放电循环3000次后比容量仍保持为初始值的84%.
A new carbon-coated SnO2 hollow fiber was successfully prepared by coaxial electrospinning, and its supercapacitor properties were well studied. The surface morphology and structure were examined using X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and the Brunauer-Emmett-Teller (BET) method. The results showed hollow fibers of average diameter 1 μm and carbon-coated SnO2 particles of average size 3-15 nm uniformly distributed on the fiber shell. The surface area was 565 m2·g-1. In a three-electrode system, the electrode achieved a respectable specific capacitance of 397.5 F·g-1 at 0.25 A·g-1, and the capacitance retained ratio was still 88% of the initial value after 3000 cycles at 1.0 A·g-1. In the case of a symmetrical two-electrode system, the electrode achieved a specific capacitance of 162.0 F·g-1 at 0.25 A·g-1 current density, and the capacitance retained ratio was 84% of the initial value after 3000 cycles at 1.0 A·g-1 %U http://www.whxb.pku.edu.cn/CN/Y2015/V31/I11/2220