%0 Journal Article %T
%A 伊春海 %A 周泽齐 %A 宋凤丹 %A 杨伯伦 %A 马娟 %A 齐随涛 %J 物理化学学报 %D 2015 %R 10.3866/PKU.WHXB201509301 %X 以氧化铟锡透明导电膜玻璃(ITO)做载体,先在室温下采用浸渍-提拉法制备出ZnO纳米晶作为种子层,再结合低成本的水热生长法合成了一维有序的ZnO纳米棒阵列.结合X射线衍射(XRD)、扫描电子显微镜(SEM)和能量色散谱仪(EDS)表征,研究了前驱液浓度、溶胶陈化时间、种子层提拉次数、水热生长时间和次数等5种因素对ZnO纳米棒的结构及形貌的影响.研究结果表明, ZnO纳米棒阵列的长度和直径会随着前驱液的浓度和溶胶陈化时间以及水热生长时间的延长而增加.当前驱液浓度为0.5 mol·L-1时,陈化时间为24 h,浸渍-提拉3次,水热反应3次,每次反应时间为150 min时,可得到一维有序的ZnO纳米棒阵列.
A two-step method for growing vertical zinc oxide nanorod arrays on indium tin oxide (ITO)-coated glass substrates is proposed. First, a zinc oxide seed layer was formed on the ITO substrate by simple dipcoating combined with the Czochralski method, and then vertical zinc oxide nanorod arrays were obtained by a hydrothermal method. The nanorod arrays were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energydispersive X-ray spectroscopy (EDS). The effects of the precursor concentration, sol-aging time, hydrothermal reaction time, and cycle times of the dip-coating and hydrothermal reaction on the structure and surface morphology of the zinc oxide nanorod arrays were investigated. The results show that the length and diameter of zinc oxide nanorod arrays increased with the increasing precursor concentrations, sol-aging time, and hydrothermal reaction time. Good vertical zinc oxide nanorod arrays were obtained under the optional growth conditions, i.e., three hydrothermal reactions for 150 min, three rounds of dip-coating, 0.5 mol·L-1 precursor solution concentration, and 24 h aging %U http://www.whxb.pku.edu.cn/CN/Y2015/V31/I11/2213