%0 Journal Article %T 有穷对数<i>φ</i>级整函数系数线性微分方程解的增长性<br>On the Growth of Solutions of Linear Differential Equations with Entire Coefficients of Finite Logarithmic <i>φ</i> Order %A 伍廷蜜 %A 龙见仁 %A 吴秀碧 %A 覃智高< %A br> %A WU Ting-mi %A LONG Jian-ren %A WU Xiu-bi %A QIN Zhi-gao %J 西南大学学报(自然科学版) %D 2018 %R 10.13718/j.cnki.xdzk.2018.08.014 %X 利用亚纯函数的Nevanlinna理论研究了有穷对数<i>φ</i>级整函数系数线性微分方程解的增长性,得到了解的增长级与系数的对数<i>φ</i>级之间的一些关系.<br>The growth of solutions of linear differential equations with entire coefficients of finite logarithmic <i>φ</i> order is investigated by using Nevanlinna theory of meromorphic functions, and the relationships between the order of growth of solutions of the equations and the logarithmic <i>φ</i> order of coefficients are obtained %K 线性微分方程 %K 整函数 %K 对数< %K i> %K φ< %K /i> %K 级 %K Nevanlinna理论 %K 增长级< %K br> %K linear differential equation %K entire functions %K logarithmic < %K i> %K φ< %K /i> %K order %K Nevanlinna theory %K order of growth %U http://xbgjxt.swu.edu.cn/jsuns/html/jsuns/2018/8/20180814.htm