%0 Journal Article %T 非线性复微分方程的解与<i>H</i><sub><i>ω</i></sub><sup>∞</sup>空间<br>The Solutions of Nonlinear Complex Differential Equations and <i>H</i><sub><i>ω</i></sub><sup>∞</sup> Space %A 孙煜 %A 龙见仁 %A 覃智高 %A 胡光明< %A br> %A SUN Yu %A LONG Jian-ren %A QIN Zhi-gao %A HU Guang-ming %J 西南大学学报(自然科学版) %D 2018 %R 10.13718/j.cnki.xdzk.2018.10.014 %X $利用直接的积分估计,研究非线性复微分方程 $ {\left( {{f^{\left( k \right)}}} \right)^{{n_k}}} + {A_{k - 1}}\left( z \right){\left( {{f^{\left( {k - 1} \right)}}} \right)^{{n_{k - 1}}}} + \cdots + {A_1}\left( z \right){\left( {f'} \right)^{{n_1}}} + {A_0}\left( z \right)f = {A_k}\left( z \right) $ 解的函数空间属性,刻画了方程的解析解,以及它们的导数属于<i>H</i><sub><i>ω</i></sub><sup>∞</sup>空间时系数需要满足的条件.改善及推广了已有的相关结果.$<br>$Based on the straightforward integral estimate, the properties of function spaces of solutions of the nonlinear differential equation $ {\left( {{f^{\left( k \right)}}} \right)^{{n_k}}} + {A_{k - 1}}\left( z \right){\left( {{f^{\left( {k - 1} \right)}}} \right)^{{n_{k - 1}}}} + \cdots + {A_1}\left( z \right){\left( {f'} \right)^{{n_1}}} + {A_0}\left( z \right)f = {A_k}\left( z \right) $ are studied. The sufficient conditions of the coefficients for the derivatives and analytic solutions of the above equation to be in <i>H</i><sub><i>ω</i></sub><sup>∞</sup> are given in this paper, which improves and extends previous results from Huusko-Korhonen-Reijonen. %K 非线性复微分方程 %K Hardy空间 %K 解析解 %K 单位圆< %K br> %K nonlinear complex differential equation %K Hardy space %K analytic solution %K unit disc %U http://xbgjxt.swu.edu.cn/jsuns/html/jsuns/2018/10/20181014.htm