%0 Journal Article %T 一类条件极值判定的拉格朗日方法<br>The Lagrangian Method to a Class of Conditional Extremum Problems %A 吴燕春 %A 胡凯< %A br> %A WU Yan-chun %A HU Kai %J 西南大学学报(自然科学版) %D 2018 %R 10.13718/j.cnki.xdzk.2018.06.015 %X 研究了多元函数条件极值的充分条件与判定方法,建立了可行集<inline-formula>$\mathscr{M}$</inline-formula>与变分空间<i>V</i>(<i>P</i><sub>0</sub>)上的点之间的联系.利用二者间关键的误差估计,给出了条件极值判定定理的简化证明.<br>In this paper, the sufficient conditions and determination method of the conditional extremum of multivariate functions are studies, and a connection is established between the points on the feasible set <inline-formula>$\mathscr{M}$</inline-formula> and the variational set <i>V</i>(<i>P</i><sub>0</sub>). By a critical error estimate of the two sets, the proof of the conditional extremum theorem is remarkably simplified %K 条件极值 %K 拉格朗日乘数法 %K 充分条件< %K br> %K conditional extremum %K Lagrange multiplier method %K sufficient condition %U http://xbgjxt.swu.edu.cn/jsuns/html/jsuns/2018/6/201806015.htm