%0 Journal Article %T 变量核齐次分数次积分在Morrey空间上的估计<br>Estimate of Homogeneous Fractional Integral Operator with a Variable Kernel on the Morrey Spaces %A 陶双平 %A 刘钰琦< %A br> %A TAO Shuang-ping %A LIU Yu-qi %J 西南大学学报(自然科学版) %D 2017 %R 10.13718/j.cnki.xdzk.2017.12.008 %X 利用空间分解技术和核函数估计, 在核函数满足一定的<i>L</i><sup><i>s</i></sup>-Dini条件下, 得到了变量核齐次分数次积分<i>T</i><sub><i>Ω</i>, <i>α</i></sub>是从Morrey空间<inline-formula>${{L}^{{\frac{\lambda }{a},\lambda }}}\left( {{\mathbb{R}}.{n}} \right)$</inline-formula> 到BMO(<inline-formula>$\mathbb{R}$</inline-formula> <sup><i>n</i></sup>)上的有界算子, 同时从<i>L</i><sup><i>p</i>, <i>λ</i></sup>(<inline-formula>$\mathbb{R}$</inline-formula> <sup><i>n</i></sup>)到Campanato空间<img src='PIC/xndxxbzrkxb-39-12-52-M1.jpg'/>也是有界的.<br>Using partial decomposition technique and kernel function estimation, under some <i>L</i><sup><i>s</i></sup>-Dini conditions of the kernel functions, we obtain that the homogeneous fractional integral operator with the variable kernel <i>T</i><sub><i>Ω</i>, <i>α</i></sub> is bounded from the Morrey spaces <inline-formula>${{L}^{{\frac{\lambda }{a}},\lambda }}\left( {{\mathbb{R}}.{n}} \right)$</inline-formula> to BMO (<inline-formula>$\mathbb{R}$</inline-formula> <sup><i>n</i></sup>), and also from L<sup>p, λ</sup>(<inline-formula>$\mathbb{R}$</inline-formula> <sup><i>n</i></sup>) to a class of the Campanato spaces <img src='PIC/xndxxbzrkxb-39-12-52-M1.jpg'/> %K 变量核 %K 齐次分数次积分算子 %K Morrey空间 %K Campanato空间< %K br> %K variable kernel %K homogeneous fractional integral operator %K Morrey space %K Campanato space %U http://xbgjxt.swu.edu.cn/jsuns/html/jsuns/2017/12/201712008.htm