%0 Journal Article %T 剩余格上几类<i>n</i>重模糊滤子的等价刻画<br>The Equivalent Characterization of Several Kinds of <i>n</i>-Fold Fuzzy Filters in the Residuated Lattice %A 刘莉君 %J 西南大学学报(自然科学版) %D 2017 %R 10.13718/j.cnki.xdzk.2017.09.016 %X 滤子是研究逻辑代数的有效工具.文章在剩余格上引入了<i>n</i>-重模糊蕴涵滤子、<i>n</i>-重模糊极滤子和<i>n</i>-重模糊正蕴涵滤子的概念,通过研究它们的特征和性质,获得了剩余格上这几类<i>n</i>-重模糊滤子之间相互转化的条件,研究结果拓展了剩余格上的模糊滤子理论,使剩余格上<i>n</i>-重模糊滤子概念间的层次关系更加清晰和完善.<br>Filter is an effective tool to study the logic algebras. In this paper, the concepts of <i>n</i>-fold fuzzy implicative filter, <i>n</i>-fold fuzzy fantastic filter and <i>n</i>-fold fuzzy positive implicative filter are introduced in the residuated lattice. Some of their properties and characterizations are given. And the conditions for the inter-transformation of these <i>n</i>-fold fuzzy filters in the residuated lattice are obtained. These results extend the theory of fuzzy filters in residuated lattices, and make the relationship between them more clea %K 剩余格 %K < %K i> %K n< %K /i> %K -重模糊蕴涵滤子 %K < %K i> %K n< %K /i> %K -重模糊极滤子 %K < %K i> %K n< %K /i> %K -重模糊正蕴涵滤子< %K br> %K residuated lattice %K < %K i> %K n< %K /i> %K -fold fuzzy implicative filter %K < %K i> %K n< %K /i> %K -fold fuzzy fantastic filter %K < %K i> %K n< %K /i> %K -fold fuzzy positive implicative filter %U http://xbgjxt.swu.edu.cn/jsuns/html/jsuns/2017/9/201709016.htm