%0 Journal Article %T 椭圆曲线<i>y</i><sup>2</sup>=(<i>x</i>+2)(<i>x</i><sup>2</sup>-2<i>x</i>+<i>p</i>)的整数点<br>The Integral Points on the Elliptic Curve <i>y</i><sup>2</sup>=(<i>x</i>+2)(<i>x</i><sup>2</sup>-2<i>x</i>+<i>p</i>) %A 杜先存 %A 赵建红 %A 万飞< %A br> %A DU Xian-cun %A ZHAO Jian-hong %A WAN Fei %J 西南大学学报(自然科学版) %D 2017 %R 10.13718/j.cnki.xdzk.2017.06.011 %X 利用Legendre符号、同余式、Pell方程的解的性质等初等方法证明了:当<i>p</i>=36<i>s</i><sup>2</sup>-5(<i>s</i>∈<inline-formula>$\mathbb{Z}$</inline-formula><sub>+</sub>, 2?<i>s</i>), 而6<i>s</i><sup>2</sup>-1, 12<i>s</i><sup>2</sup>+1均为素数时, 椭圆曲线<i>y</i><sup>2</sup>=(<i>x</i>+2)(<i>x</i><sup>2</sup>-2<i>x</i>+<i>p</i>)仅有整数点为(<i>x, y</i>)=(-2, 0).<br>Let <i>p</i>=36<i>s</i><sup>2</sup>-5(<i>s</i>∈<inline-formula>$\mathbb{Z}$</inline-formula><sub>+</sub>, 2?<i>s</i>), where is a positive odd number satisfying that 6<i>s</i><sup>2</sup>-1 and 12<i>s</i><sup>2</sup>+1 are primes. It is proved in this paper with the help of the Legendre symbol, congruence and some properties of the solutions to the Pell equation that the elliptic curve <i>y</i><sup>2</sup>=(<i>x</i>+2)(<i>x</i><sup>2</sup>-2<i>x</i>+<i>p</i>) has only integer point (<i>x, y</i>)=(-2, 0) %K 椭圆曲线 %K 整数点 %K Pell方程 %K Legendre符号 %K 同余< %K br> %K elliptic curve %K integer point %K Pell equation %K Legendre symbol %K congruence %U http://xbgjxt.swu.edu.cn/jsuns/html/jsuns/2017/6/201706011.htm