%0 Journal Article %T 关于Smarandache LCM函数的数论函数方程<i>S</i>(<i>SL</i>(<i>n</i><sup>11, 12</sup>))=<i>φ</i><sub>2</sub>(<i>n</i>)的可解性<br>On the Solvability of the Arithmetic Function Equation <i>S</i> (<i>SL</i> (<i>n</i><sup>11, 12</sup>))=<i>φ</i><sub>2</sub> (<i>n</i>) of Smarandache LCM Function %A 袁合才 %A 王晓峰< %A br> %A YUAN He-cai %A WANG Xiao-feng %J 西南大学学报(自然科学版) %D 2018 %R 10.13718/j.cnki.xdzk.2018.10.012 %X 研究了数论函数方程<i>S</i>(<i>SL</i>(<i>n</i><sup>11</sup>))=<i>φ</i><sub>2</sub>(<i>n</i>)及<i>S</i>(<i>SL</i>(<i>n</i><sup>12</sup>))=<i>φ</i><sub>2</sub>(<i>n</i>)的可解性问题,其中<i>S</i>(<i>n</i>)为Smarandache函数,<i>SL</i>(<i>n</i>)为Smarandache LCM函数,<i>φ</i><sub>2</sub>(<i>n</i>)为广义欧拉函数.利用初等数论的内容方法及计算技巧得到上述两个数论函数方程的所有正整数解.<br>In this paper we discuss the solvability of the arithmetic function equation <i>S</i>(<i>SL</i>(<i>n</i><sup>11</sup>))=<i>φ</i><sub>2</sub>(<i>n</i>) and <i>S</i>(<i>SL</i>(<i>n</i><sup>12</sup>))=<i>φ</i><sub>2</sub>(<i>n</i>) of the Smarandache LCM function, where <i>S</i>(<i>n</i>) is a Smarandache function, <i>SL</i>(<i>n</i>) is a Smarandache LCM function, and <i>φ</i><sub>2</sub>(<i>n</i>) is a generalized Euler function. All positive integer solutions of the above two arithmetic function equations are obtained by using the elementary number theory method and the calculation technique %K 广义欧拉函数 %K Smarandache函数 %K Smarandache LCM函数 %K 正整数解< %K br> %K generalized Euler function %K Smarandache function %K Smarandache LCM function %K positive integer solution %U http://xbgjxt.swu.edu.cn/jsuns/html/jsuns/2018/10/20181012.htm