%0 Journal Article %T 求解对流扩散方程的一种高精度紧致差分格式<br>A High-Order Compact Difference Scheme for Solving Convection-Diffusion Equations %A 罗传胜 %A 李春光 %A 董建强 %A 景何仿< %A br> %A LUO Chuan-sheng %A LI Chun-guang %A DONG Jian-qiang %A JING He-fang %J 西南大学学报(自然科学版) %D 2018 %R 10.13718/j.cnki.xdzk.2018.09.014 %X 在指数变换的基础上,将对流扩散方程变为扩散方程,消除了数值求解中较难处理的对流项,采用四阶紧致差分方法离散扩散方程的空间变量,采用扩展的<inline-formula>$\frac{1}{3} $</inline-formula> -Simpson公式离散时间变量,格式的截断误差为<i>O</i>(<i>τ</i><sup>4</sup>+<i>h</i><sup>4</sup>).理论分析证明该格式是无条件稳定的.通过数值算例验证了本文方法的有效性.<br>In this paper, based on exponential transform, the convection diffusion equation is transformed into a diffusion equation, thus eradicating the advection term, which is hard to treat in numerical solution. A high-order accurate implicit compact difference scheme is constructed for solving the one dimensional parabolic equation by the fourth-order pade' formula combined with time extension of the <inline-formula>$\frac{1}{3} $</inline-formula>-Simpson formulas. The truncation error of the scheme is <i>O</i>(<i>τ</i><sup>4</sup>+<i>h</i><sup>4</sup>). A theoretical analysis shows that the scheme is unconditionally stable. Numerical experiments verify the accuracy and reliability of the present scheme %K 高精度紧致格式 %K 无条件稳定 %K 指数变换 %K 数值计算 %K 扩展的$\frac{1}{3} $-Simpson公式< %K br> %K high-order compact scheme %K unconditionally stable %K exponential transformation %K numerical calculation %K extension of the $\frac{1}{3} $-Simpson %U http://xbgjxt.swu.edu.cn/jsuns/html/jsuns/2018/9/20180914.htm