%0 Journal Article %T 一类锥约束变分不等式问题的间隙函数和误差界<br>Gap Functions and Error Bounds for a Class of Variational Inequalities with Cone Constraints %A 董文 %A 欧小庆 %A 李金富 %A 陈加伟< %A br> %A DONG Wen %A OU Xiao-qing %A LI Jing-fu %A CHEN Jia-wei %J 西南大学学报(自然科学版) %D 2017 %R 10.13718/j.cnki.xdzk.2017.08.015 %X 鉴于间隙函数与误差界在优化方法中有重要的作用,特别地,误差界能刻画可行点和变分不等式解集之间的有效估计距离.利用像空间分析法,构造了带锥约束变分不等式的间隙函数.然后,利用此间隙函数,得到了带锥约束变分不等式的误差界.<br>The gap function and the error bound play an important role in optimization methods and the error bound, especially, can characterize the effective estimated distance between a feasible point and the solution set of variational inequalities. In this article, by using the image space analysis, gap functions for a class of variational inequalities with cone constraints are proposed. Moreover, error bounds, which provide an effective estimated distance between a feasible point and the solution set, for the variational inequalities are established via the gap functions %K 约束变分不等式 %K 像空间分析 %K 间隙函数 %K 误差界< %K br> %K constrained variational inequality %K image space analysis %K gap function %K error bound %U http://xbgjxt.swu.edu.cn/jsuns/html/jsuns/2017/8/201708015.htm