%0 Journal Article %T ?Х亲灾蔚跚欧匠痰睦?回吸引子<br>Existence of pullback attractors for non autonomous suspension bridge equations %A 雍鸿雄 %A 马巧珍 %A 常亚亚 %J 四川大学学报 (自然科学版) %D 2015 %X 证明了非自治吊桥方程当非线性项 ??g〖JB((〗u,t〖JB))〗?? 和外力项 ??f〖JB((〗x,t〖JB))〗?? 都与时间 ??t?в泄厍? ??g〖JB((〗u,t〖JB))〗?? 平移有界时解的渐近性行为, 并由此获得了方程在 ??H??2〖JB((〗0,L〖JB))〗∩H??1??0〖JB((〗0,L〖JB))〗×L??2〖JB((〗0,L〖JB))〗?? 中的拉回 ?И?D???? 吸引子的存在性.<br>We prove the asymptotic compactness of process for the non autonomous suspension bridge equations with a nonlinearity ??g〖JB((〗u,t〖JB))〗?? and a forcing term ??f〖JB((〗x,t〖JB))〗??, and ??g〖JB((〗u,t〖JB))〗?? is translation bounded. Furthermore, we obtain the pullback ?И?D???? attractor in ??H??2〖JB((〗0,L〖JB))〗∩H??1??0〖JB((〗0,L〖JB))〗×L??2〖JB((〗0,L〖JB)) %K 非自治吊桥方程 拉回吸引子 拉回 ?И?D???? 条件< %K br> %K Non autonomous suspension bridge equation Pullback attractor Pullback ?И?D???? Condition %U http://science.ijournals.cn/jsunature_cn/ch/reader/view_abstract.aspx?file_no=20152008&flag=1