%0 Journal Article %T 分数阶常微分方程多点边值问题的上下解方法<br>The lower and upper solution method of fractional-order multiple-point differential equation boundary value problem %A 陈彩龙 %A 韩晓玲 %J 四川大学学报 (自然科学版) %D 2017 %X 本文应用上下解方法研究了分数阶常微分方程多点边值问题 x^(δ)(t),=f(t,x(t)),t∈[a,b],a>0, x(a)+∑{k=1}^{m}a_{k}x(t_{k})=c 解的存在性.其中f:[a,b]×R→R是L^(1)-Caratheodory函数,δ∈(0,1],c∈R,t_{k}(k=1,2,...,m)为满足a 0的常数.<br>In this paper,by applying upper and lower solution method,we study the existence of solution of fractional-order multiple-point boundary value problem x^(δ)(t),=f(t,x(t)),t∈[a,b],a>0, x(a)+∑{k=1}^{m}a_{k}x(t_{k})=c where f:[a,b]×R→R is L^(1)-Caratheodory function,δ∈(0,1],c∈R,t_{k}(k=1,2,...,m) are constants and satisfying a 0 %K 分数阶 多点边值问题 上下解方法 解的存在性< %K br> %K Fractional-order multiple-point boundary value problem Upper and lower solution method Existence of solution %U http://science.ijournals.cn/jsunature_cn/ch/reader/view_abstract.aspx?file_no=Z160206&flag=1