%0 Journal Article %T k-集合上与算术函数关联矩阵的行列式<br>Determinants of matrices associated with arithmetic functions on ??k ??set %A 胡双年 %A 谭千蓉 %A 赵相瑜 %J 四川大学学报 (自然科学版) %D 2015 %X 设??S={x??1,…,x??n}??是由??n??个不同元素组成的正整数集合,??f??是一个算术函数. 用??(f(S))=(f(x??i,x??j))?П硎疽桓霆?n×n?У木卣螅?其?В?i,j)??项为??f?г讵?x??i?в氇?x??j?У淖畲蠊?因子?В?x??i,x??j)?ТΦ娜≈担?用??(f[S])=(f[x??i,x??j])?П硎玖硪桓霆?n×n?У木卣螅?其?Вǎ?,j)项为?И?f???г讵И?x??i???в?x??j的最小公倍数?В郦?x??i,x??j??]?ТΦ娜≈?. ??若??x??i?в氇?x??j?У淖畲蠊?因子?В?x??i,x??j)=k,1≤i≠j≤n?В?则称??S??是??k ?Ъ?合. 本文主要给出了定义在??k ?Ъ?合上的矩阵?В?f(S))?Ш酮?(f[S])?У男辛惺降募扑愎?式. 进而作为推论给出了det??(f(S))|??det??(f[S])?У奶跫?<br>Let ??S={x??1,…,x??n}??be a set of ??n?? distinct positive integers and ??f?? be an arithmetic function.We use ??(f(S))=(f(x??i,x??j)) (??respectively??.(f[S])=(f[x??i,x??j])??to denote the ??n×n?? matrix having ??f?? evaluated at the greatest common divisor ??(x??i,x??j)?? (respectively,the least common multiple ?В?x??i,x??j]??) of ??x??i?? and ??x??j?? as its ??i,j ??entry. Let ??k≥1?? be an integer.The set ??S?? is said to be a ??k ??set if ??(x??i,x??j)=k?? for?? 1≤i≠j≤n.?? In this paper,we obtain the determinants of the matrices ??(f(S))??and ??(f[S])?? on the ??k ??set ??S??. As a corollary. we find that det ??(f(S))?? divides det ??(f[S])?? under some natural conditions %K 算术函数 矩阵 行列式 整除式< %K br> %K Arithmetic function %K Matrix %K Determinant %K Divisibility %U http://science.ijournals.cn/jsunature_cn/ch/reader/view_abstract.aspx?file_no=20153002&flag=1