%0 Journal Article %T 非对称噪声的Langevin谐振子模型的随机共振<br>Stochastic Resonance in a Langevin Oscillator Subject to Asymmetric Noise %A 丛雪 %A 邓科 %J 四川大学学报 (自然科学版) %D 2018 %X 本文研究了周期调制噪声和非对称双态噪声联合驱动下具有频率涨落的谐振子的随机共振现象,本文的主要工作是通过Shapiro-Logniov公式求解了谐振子系统的稳态响应一阶矩的解析表达式,并且推到了谐振子系统的稳态响应一阶矩的稳定性条件。最后发现了系统关于不同参数的广义随机共振现象,出现了双峰共振现象等丰富的动力学行为。<br>This paper focuses on the phenomenon of stochastic resonance in a oscillator with random frequency subject to periodically modulated noise and asymmetric noise. Through Shapiro-Loginov formula, the analytical expression of the first moment of stable response is calculated, then we get the stable conditions of the first moment. At last, we discover the phenomenon of stochastic resonance with different parameters and rich dynamical behaviors, such as multi-resonance %K 稳态响应一阶矩、稳定性条件、Shapiro-Loginov公式、Langevin谐振子模型、解析表达式< %K br> %K Analytical expression %K stable condition %K The model of Langevin Oscillator %K Shapiro-Loginov formula %K The first moment of stable response %U http://science.ijournals.cn/jsunature_cn/ch/reader/view_abstract.aspx?file_no=Z170213&flag=1