%0 Journal Article %T 具有负数量曲率的紧致黎曼流形的Killing向量场<br>KILLING VECTOR FIELDS ON COMPACT RIEMANNIAN MANIFOLDS WITH NEGATIVE SCALAR CURVATURE %A 作者 %A 付海平 %A 但萍萍 %A 彭晓芸 %J 数学杂志 %D 2017 %X 本文研究了具有负数量曲率的紧致黎曼流形上的Killing向量场.利用Bochner方法,得到在此类流形上非平凡的Killing向量场的存在的必要条件.这个结果拓广了文献[6]中的定理1.<br>In this paper, we investigate killing vector fields on compact Riemannian manifolds with negative scalar curvature. By using the Bochner method, we obtain a necessary condition of the existence of non-trivial killing vector fields on these manifolds, which extends Theorem 1 due to[6] %K Killing向量场 负数量曲率 无迹Ricci曲率张量< %K br> %K killing vector field negative scalar curvature trace-free Ricci curvature tensor %U http://sxzz.whu.edu.cn/sxzz/ch/reader/view_abstract.aspx?file_no=20170602&flag=1