%0 Journal Article %T 具有对称自同态与对称导子的环<br>ON RINGS WITH SYMMETRIC ENDOMORPHISMS AND SYMMETRIC DERIVATIONS %A 作者 %A 王尧 %A 王伟亮 %A 任艳丽 %J 数学杂志 %D 2015 %X 本文研究具有对称自同态和对称导子的环. 利用性质nil(R[x]) =nil(R)[x], 我们证明了: 如果R是弱2-primal 环, 则R 是弱对称(σ, δ)-环当且仅当R[x] 是弱对称(σ,δ) -环. 本文结论拓展了关于对称环和弱对称环的研究.<br>In this paper, we study rings with symmetric endomorphisms and symmetric derivations. By using the property nil(R[x]) =nil(R)[x], we show that if R is weakly 2-primal, then R is a weak symmetric (σ,δ)-ring if and only if R[x] is a weak symmetric (σ,δ)-ring, which extend the research on symmetric rings and weak symmetric rings %K 对称环 对称σ-环 弱对称(σ %K δ)-环 弱2-primal 环< %K br> %K symmetric ring symmetric σ-ring weak symmetric (σ %K δ)-ring weak 2-primal ring %U http://sxzz.whu.edu.cn/sxzz/ch/reader/view_abstract.aspx?file_no=20150603&flag=1