%0 Journal Article %T Bernstein-Durrmeyer算子拟中插式在Orlicz空间中的逼近<br>APPROXIMATION BY BERNSTEIN-DURRMEYER QUASI-INTERPOLANTS IN ORLICZ SPACES %A 作者 %A 韩领兄 %A 吴嘎日迪 %A 高会双 %J 数学杂志 %D 2017 %X 本文在Orlicz空间中研究了Bernstein-Durrmeyer算子拟中插式Bn(2r-1)(f,x)逼近性质.利用2r阶Ditzian-Totik模与K-泛函的等价性,Jensen不等式,H?lder不等式,Berens-Lorentz引理得到了逼近的正,逆和等价定理,从而推广了Bernstein-Durrmeyer算子拟中插式Bn(2r-1)(f,x)在LP空间的逼近结果.<br>In the present paper, we will study the approximation property of the BernsteinDurrmeyer quasi-interpolants Bn(2r-1)(f,x) in Orlicz space. By using the 2r-th Ditzian-Totik modulus of smoothness, Jensen inequality, H?lder inequality and Berens-Lorentz lemma, we obtain the direct, inverse and equivalence theorems, which generalize the approximation results of the Bernstein-Durrmeyer quasi-interpolants Bn(2r-1)(f,x) in LP space %K Bernstein-Durrmeyer算子 Ditzian-Totik模 正逆定理 Orlicz空间< %K br> %K Bernstein-Durrmeyer operators Ditzian-Totik modulus direct inverse theorem Orlicz space %U http://sxzz.whu.edu.cn/sxzz/ch/reader/view_abstract.aspx?file_no=20170306&flag=1