%0 Journal Article %T 关于p-可除kG-模的一些结论<br>SOME RESULTS ON THE p-DIVISIBLE kG-MODULE %A 作者 %A 黄文林 %J 数学杂志 %D 2017 %X 本文研究了p-可除kG-模,这是一类由群阶的素数因子来控制的模类.利用Heller算子,证明了n次Heller算子置换非投射不可分解p-可除kG-模的同类;利用模的诱导和限制方法,证明了若H是G的强p-嵌入子群,则Green对应建立了不可分解p-可除kG-模的同构类与不可分解p-可除kH-模的同构类之间的一一对应.推广了不可分解相对投射kG-模上的Green对应.<br>In this paper, we study the p-divisible kG-module, which is essentially controlled by the prime p. With the Heller operator, we prove that the nth-Heller operator permutates the isomorphism classes of the indecomposable non-projective p-divisible kG-modules; and with the methods of induction and restriction, we prove that Green correspondence induces a bijection between the isomorphism classes of the indecomposable p-divisible kG-modules and that of the indecomposable p-divisible kH-modules whenever H is strongly p-embedded in G, which generalizes Green correspondence for the indecomposable relative projective modules %K p-可除kG-模 置换模 Heller算子 Green对应< %K br> %K p-divisible module endo-p-permutation module Heller operator Green correspondence %U http://sxzz.whu.edu.cn/sxzz/ch/reader/view_abstract.aspx?file_no=20170319&flag=1