%0 Journal Article %T Kaup-Newell族的分数阶非线性双可积耦合及其Hamilton结构<br>THE FRACTIONAL NOLINEAR BI-INTEGRABLE COUPLINGS OF KAUP-NEWELL HIERARCHY AND ITS HAMILTONIAN STRUCTURES %A 作者 %A 魏含玉 %A 李春丽 %A 夏铁成 %J 数学杂志 %D 2017 %X 本文研究了Kaup-Newell族的分数阶非线性双可积耦合.利用分数阶等谱问题和非半单矩阵Lie代数上的非退化、对称双线性形式,得到了Kaup-Newell族的分数阶非线性双可积耦合,并求出了Kaup-Newell族双可积耦合的分数阶Hamilton结构.本文的方法还可以应用于其它孤子族分数阶可积耦合.<br>In this paper, we study the fractional nolinear bi-integrable couplings of KaupNewell hierarchy. By using fractional isospectral problems and non-semisimple matrix Lie algebras on which there exist non-degenerate, symmetric and ad-invariant bilinear forms, the fractional nonlinear bi-integrable couplings of Kaup-Newell hierarchy are presented. Furthermore, we also obtained the fractional Hamiltonian structures of the fractional integrable couplings of Kaup-Newell hierarchy. The methods derived by us can be generalized to other fractional integrable couplings of soliton hierarchy %K 矩阵Lie代数 Kaup-Newell族 双可积耦合 分数阶Hamilton结构< %K br> %K matrix Lie algebras Kaup-Newell hierarchy bi-integrable couplings fractional Hamiltonian structures %U http://sxzz.whu.edu.cn/sxzz/ch/reader/view_abstract.aspx?file_no=20170316&flag=1