%0 Journal Article %T 基于广义SELO惩罚的高维变量选择<br>HIGH-DIMENSIONAL VARIABLE SELECTION WITH THE GENERALIZED SELO PENALTY %A 作者 %A 石跃勇 %A 曹永秀 %A 余吉昌 %A 焦雨领 %J 数学杂志 %D 2018 %X 本文考虑高维线性模型中的变量选择和参数估计.提出了一种广义的SELO方法求解惩罚最小二乘问题.一种坐标下降算法结合调节参数的一种连续化策略和高维BIC被用来计算相应的GSELO-PLS估计.模拟研究和实际数据分析显示了提出方法的良好表现.<br>In this paper, we consider the variable selection and parameter estimation in high-dimensional linear models. We propose a generalized SELO (GSELO) method for solving the penalized least-squares (PLS) problem. A coordinate descent algorithm coupled with a continuation strategy and high-dimensional BIC on the tuning parameter are used to compute corresponding GSELO-PLS estimators. Simulation studies and a real data analysis show the good performance of the proposed method %K 连续化策略 坐标下降 高维BIC 局部线性逼近 惩罚最小二乘< %K br> %K continuation strategy coordinate descent high-dimensional BIC local linear approximation penalized least squares %U http://sxzz.whu.edu.cn/sxzz/ch/reader/view_abstract.aspx?file_no=20180604&flag=1