%0 Journal Article %T 一类0 < α < 1带有无限时滞的中立型脉冲微分方程mild解的存在性<br>THE EXISTENCE OF MILD SOLUTION FOR IMPULSIVE FRACTIONAL NEUTRAL FUNCTION INTEGRO-DIFFERENTIAL EVOLUTION EQUATION WITH INFINITE DELAY OF ORDER 0 < α < 1 %A 作者 %A 薛正青 %A 舒小保 %A 徐霏 %J 数学杂志 %D 2018 %X 本文研究了一类0 < α < 1带有无限时滞的中立型脉冲微分方程mild解的存在性的问题.利用解算子的相关性质及M?nch不动点理论的方法,获得了这类方程的mild解并予以证明,且得到了解的存在性的结果.<br>In this paper, we investigate the existence of mild solution for impulsive fractional neutral function integro-differential evolution equations with infinite delay of order 0 < α < 1 in a Banach space. The main mathematical techniques used here include the fractional calculus, properties of solution operators, and M?nch's fixed point theorem via measures of noncompactness. Without assuming that the solution operators are compact, we prove the existence of mild solution to such equations %K 中立型脉冲微分方程 mild解 不动点定理 非紧性测度< %K br> %K impulsive fractional neutral function integro-differential evolution equations mild solution fixed point theorem Hausdorff measure of noncompactness %U http://sxzz.whu.edu.cn/sxzz/ch/reader/view_abstract.aspx?file_no=20180205&flag=1