%0 Journal Article %T 射影Ricci平坦的Kropina度量<br>ON PROJECTIVE RICCI FLAT KROPINA METRICS %A 作者 %A 程新跃 %A 马小玉 %A 沈玉玲 %J 数学杂志 %D 2017 %X 本文研究和刻画了射影Ricci平坦的Kropina度量.利用Kropina度量的S-曲率和Ricci曲率的公式,得到了Kropina度量的射影Ricci曲率公式.在此基础上得到了Kropina度量是射影Ricci平坦度量的充分必要条件.进一步,作为自然的应用,本文研究和刻画了由一个黎曼度量和一个具有常数长度的Killing 1-形式定义的射影Ricci平坦的Kropina度量,也刻画了具有迷向S-曲率的射影Ricci平坦的Kropina度量.在这种情形下,Kropina度量是Ricci平坦度量.<br>In this paper, we study and characterize projective Ricci flat Kropina metrics. By using the formulas of S-curvature and Ricci curvature for Kropina metrics, we obtain the formula of the projective Ricci curvature for Kropina metrics. Based on this, we obtain the necessary and su-cient conditions for Kropina metrics to be projective Ricci flat metrics. Further, as a natural application, we study and characterize projective Ricci flat Kropina metrics deflned by a Riemannian metric and a Killing 1-form of constant length. We also characterize projective Ricci flat Kropina metrics with isotropic S-curvature. In this case, the Kropina metrics are Ricci flat metrics %K 芬斯勒度量 Kropina度量 Ricci曲率 S-曲率 射影Ricci曲率< %K br> %K Finsler metric Kropina metrics Ricci curvature S-curvature projective Ricci curvature %U http://sxzz.whu.edu.cn/sxzz/ch/reader/view_abstract.aspx?file_no=20170405&flag=1