%0 Journal Article %T 关于完备收缩的Ricci-harmonic孤子的研究<br>ON COMLETE SHRINKING RICCI-HARMONIC SOLITONS %A 作者 %A 杨飞 %A 张良迪 %J 数学杂志 %D 2016 %X 本文研究了收缩的Ricci-harmonic孤子的几何性质的问题.利用文献[4]在Ricci孤子下的方法,获得了每个紧致Ricci-harmonic孤子是一个梯度孤子的结论,推广了Perelman等人在Ricci孤子下的结果.此外,利用文献[14]在Ricci孤子下的方法,获得了完备非紧梯度收缩的Ricci-harmonic孤子具有比至多欧氏增长更加精确的体积增长估计的结果,推广了文献[14]在Ricci孤子下的结果.<br>In this paper, we study the geometry of shrinking Ricci-harmonic solitons. By utilizing the method of Manola, Gabriele and Carlo [4] under the Ricci soliton, we prove the result that every compact shrinking Ricci-harmonic soliton is a gradient one, which extends the result in the case of Ricci solition. Moreover, by utilizing the method of Zhang [14], we prove a more precise volume growth estimate than that of at most Euclidean growth for the complete non-compact gradient shrinking Ricci-harmonic soliton, which extends the result of Zhang [14] in the case of Ricci solition %K 收缩的Ricci-harmonic孤子 梯度 体积增长< %K br> %K shrinking Ricci-harmonic soliton gradient volume growth %U http://sxzz.whu.edu.cn/sxzz/ch/reader/view_abstract.aspx?file_no=20160306&flag=1