%0 Journal Article %T 随机扰动下统一混沌系统的有限时间同步<br>FINITE-TIME SYNCHRONIZATION OF UNIFLED CHAOTIC SYSTEM WITH STOCHASTIC PERTURBATION %A 作者 %A 王娇 %A 涂俐兰 %A 朱泽飞 %J 数学杂志 %D 2017 %X 本文研究了具有随机扰动的统一混沌系统的有限时间同步问题,其中随机扰动是一维标准的维纳随机过程.利用了有限时间随机李雅普诺夫稳定性理论、伊藤公式,本文分三个步骤设立了三个控制器获得了驱动{响应系统在有限时间内的均方渐近同步.最后进行的数值模拟验证了理论结果的正确性和方法的有效性.<br>In this paper, finite-time synchronization of the unified chaotic system with stochastic perturbation is investigated, in which the perturbation is a Wiener process of onedimensional standards. Based on finite-time stochastic Lyapunov stability theory and Ito formula, three steps are presented to consecutively design three controllers to guarantee the finite-time mean-square asymptotical synchronization of the drive-response systems. Finally, numerical simulations are provided to illustrate the correctness and efiectiveness of the theoretical results %K 随机扰动 统一混沌系统 有限时间同步 伊藤公式 李雅普诺夫稳定性理论< %K br> %K stochastic perturbation unified chaotic system finite-time synchronization Ito formula Lyapunov stability theory %U http://sxzz.whu.edu.cn/sxzz/ch/reader/view_abstract.aspx?file_no=20170120&flag=1