%0 Journal Article %T 容有半对称度量联络的广义复空间中子流形上的Chen-Ricci不等式<br>CHEN-RICCI INEQUALITIES FOR SUBMANIFOLDS OF GENERALIZED COMPLEX SPACE FORMS WITH SEMI-SYMMETRIC METRIC CONNECTIONS %A 作者 %A 何国庆 %J 数学杂志 %D 2016 %X 本文研究了容有半对称度量联络的广义复空间中的子流形上的Chen-Ricci不等式.利用代数技巧,建立了子流形上的Chen-Ricci不等式.这些不等式给出了子流形的外在几何量-关于半对称联络的平均曲率与内在几何量-Ricci曲率及k-Ricci曲率之间的关系,推广了Mihai和?zgür的一些结果.<br>In this paper, we study Chen-Ricci inequalities for submanifolds of generalized complex space forms endowed with a semi-symmetric metric connection. By using algebraic techniques, we establish Chen-Ricci inequalities between the mean curvature associated with a semisymmetric metric connection and certain intrinsic invariants involving the Ricci curvature and k-Ricci curvature of submanifolds, which generalize some of Mihai and ?zgür's results %K Chen-Ricci不等式 k-Ricci曲率 广义复空间 半对称度量联络< %K br> %K Chen-Ricci inequality k-Ricci curvature generalized complex space form semisymmetric metric connection %U http://sxzz.whu.edu.cn/sxzz/ch/reader/view_abstract.aspx?file_no=20160603&flag=1