%0 Journal Article %T 具有加权测度的H型群上漂移Laplace算子的Levitin-Parnovski型特征值不等式<br>LEVITIN-PARNOVSKI-TYPE INEQUALITY FOR EIGENVALUES OF THE DRIFTING LAPLACIAN ON THE H-TYPE GROUP WITH THE WEIGHTED MEASURE %A 作者 %A 韩承月 %A 孙和军 %A 江绪永 %J 数学杂志 %D 2018 %X 本文研究了具有加权测度dμ=e-φdv的H型群G上漂移Laplace算子-△G+<▽Gφ,▽G(·)>的Dirichlet特征值问题,建立了该问题的Levitin-Parnovski型特征值不等式,推广包含了Ilias和Makhoul对Heisenberg群上次Laplace算子所获得的结果(J.Geom.Anal.,2012,22(1):206-222).<br>In this paper, we study the Dirichlet eigenvalue problem of the drifting Laplacian -△G + <▽Gφ, ▽G (·)> on the H-type group G with the weighted measured dμ=e-φdv. We establish a Levitin-Parnovski universal inequality for eigenvalues of this problem, which generalize the result derived by Ilias and Makhoul for the Kohn Laplacian on the Heisenberg group (J. Geom. Anal., 2012, 22(1):206-222) %K H型群 特征值 漂移Laplace算子< %K br> %K H-type group eigenvalue drifting Laplacian %U http://sxzz.whu.edu.cn/sxzz/ch/reader/view_abstract.aspx?file_no=20180511&flag=1