%0 Journal Article %T 效应代数的同态<br>HOMOMORPHISM ON EFFECT ALGEBRAS %A 作者 %A 张海燕 %A 侯成军 %J 数学杂志 %D 2015 %X 本文研究了维数大于等于3的可分Hillbert空间H的效应代数E(H)上的同态问题.利用投影算子以及线性延拓的方法,获得了效应代数E(H)上每个满的σ-正交完备的强同态φ都具有形式φ(A)=U AU*,当满足齐次性以及单边保序的条件时可以延拓到交换von-Neumann代数A到B (H)上一个有界*同态的结果.<br>In this paper, we study the problems of homomorphics on the effect algebra E(H) of a separable Hillbert space H whose dimension is equal to or more than three. Using the projections and linear extension methods, we obtain that each surjective and strong σ-orthcomplete homomorphism has the form φ(A)=U AU*, and prove hat each homomorphism from E(A) into E(H) satisfying homogeneity and preserving order in one side can be extended to a bounded *-homomorphism from an abelian von-Neumann algebra A into B(H) %K 同态 效应代数 Von-Neumann代数 投影 Jordan*同态< %K br> %K homomorphism effect algebra von-Neumann algebra projection Jordan * homomorphism %U http://sxzz.whu.edu.cn/sxzz/ch/reader/view_abstract.aspx?file_no=20150527&flag=1