%0 Journal Article %T 有关不能全含于半球中的一些曲面的性质讨论<br>THE DISCUSSION OF SOME SURFACES WHICH ARE NOT ALL CONTAINED IN A HEMISPHERE %A 作者 %A 张文娟 %J 数学杂志 %D 2016 %X 本文主要研究了不能全含于开半球中的一些特殊曲面.利用Lr算子的相关性质,证明了对Sn+1中紧致r-极小超曲面,如果第二基本形式的秩rank (hij)> r,则其不全含在Sn+1的一个开半球中.<br>In this paper, we mainly study some special surfaces which are not all contained in an open hemisphere. By using properties of Lr operator, we prove that for a compact r-minimal hypersurface in Sn+1, if the rank of the second fundamental form rank(hij) > r then the hypersurface can not be contained in an open hemisphere of Sn+1 %K 高阶极小超曲面 常平均曲率 高斯映射 半球< %K br> %K higher order minimal hypersurface constant mean curvature Gauss map hemisphere %U http://sxzz.whu.edu.cn/sxzz/ch/reader/view_abstract.aspx?file_no=20160223&flag=1