%0 Journal Article %T 一类分数次次线性算子及其交换子在齐型空间上的弱Morrey-Herz空间上的有界性<br>BOUNDEDNESS OF FRACTIONAL SUB-LINEAR OPERATORS AND ITS COMMUTATORS ON WEAK MORREY-HERZ SPACES ON HOMOGENEOUS SPACE %A 作者 %A 王丽娟 %J 数学杂志 %D 2016 %X 本文研究了一类次线性算子及其交换子在齐型空间上的弱有界性的问题.利用齐型空间的基本性质以及给出的一类次线性算子及其分别与BMO函数,Lipschitz函数生成的交换子在Lp(X)上的弱有界性,证明了其在齐型空间上Morrey-Herz空间中的弱有界性.推广了该类算子在Morrey-Herz空间中的强有界性这一结果.<br>In this paper, we study the weak Boundedness of the sub-linear operators and its commutators on homogeneous spaces. Based on the properties of homogeneous spaces and the boundedness of sub-linear operators with the commutators generated by BMO and Lipschitz functions on weak Lp(X), the boundedness of the sub-linear operators and its commutators on weak Morrey-Herz spaces on homogeneous spaces are proved, which extend of the boundedness of the operators on Morrey-Herz spaces on homogeneous spaces %K 齐型空间 弱Morrey-Herz空间 次线性算子 交换子 BMO空间 Lipschitz空间< %K br> %K homogeneous spaces weak Morrey-Herz spaces sub-linear operator commutator BMO spaces Lipschitz spaces %U http://sxzz.whu.edu.cn/sxzz/ch/reader/view_abstract.aspx?file_no=20160218&flag=1