%0 Journal Article %T 分数布朗运动下带交易费用和红利的两值期权定价<br>BINARY OPTION PRICING WITH TRANSACTION COSTS AND DIVIDENDS IN A FRACTIONAL BROWNIAN MOTION ENVIRONMENT %A 作者 %A 韦才敏 %A 林先伟 %A 范衠 %J 数学杂志 %D 2018 %X 本文研究了在分数布朗运动环境下带交易费用和红利的两值期权定价问题.在标的资产服从几何分数布朗运动的情况下,利用分数It?公式和无风险套利原理建立了分数布朗运动环境下带交易费用和红利的两值期权的定价模型.再通过用偏微分方程的方法进行求解此定价模型,得到了在分数布朗运动下带交易费用和红利的两值期权定价公式.所得结果推广了已有结论.<br>This paper deals with the problem of pricing Binary option with transaction costs and dividends under the fractional Brownian motion. Suppose that the stock price follows geometric fractional Brownian motion, by using fractional It? formula and no-arbitrage principle, we establish the binary option pricing model with transaction costs and dividends. The method of partial differential equation are used to solve this model, and then we get the pricing formula of the binary option with transaction costs and dividends in a fractional Brownian motion environment, which extends the previous conclusions %K 两值期权 期权定价 无风险套利原则 交易成本 分数布朗运动< %K br> %K binary option option pricing no-arbitrage principle transaction costs fractional Brownian motion %U http://sxzz.whu.edu.cn/sxzz/ch/reader/view_abstract.aspx?file_no=20180517&flag=1