%0 Journal Article %T 具有幂零奇点的七次Hamilton系统Abel积分的零点个数估计<br>ON THE NUMBER OF ZEROS FOR ABEL INTEGRALS OF HAMILTON SYSTEM OF SEVEN DEGREE WITH NILPOTENT SINGULARITIES %A 作者 %A 马慧龙 %A 杨纪华 %J 数学杂志 %D 2017 %X 本文研究了具有幂零奇点的七次Hamilton系统的Abel积分的零点个数问题.利用Picard-Fuchs方程法,得到了Abel积分I(h)=∫Γh g(x,y)dx-f(x,y)dy在(0,1/4)上零点个数B(n)≤ 3[(n-1)/4],其中Γh是H(x,y)=x4+y4-x8=h,h ∈(0,1/4),所定义的卵形线f(x,y)=∑1≤4i+4j+1≤naijx4i+1y4j和g(x,y)=∑1≤4i+4j+1≤nbijx4iy4j+1是x和y的次数不超过n的多项式.<br>In this paper, we study the number of zeros for Abel integrals of Hamilton system of seven degree with nilpotent singularities. By using the Picard-Fuchs equation method, we derive that the number of zeros of Abel integrals I(h)=∫Γh g(x,y)dx-f(x,y)dy on the open interval (0, 1/4) is at most 3[(n-1)/4], where Γh is an oval lying on the algebraic curve H(x,y)=x4+y4-x8=h,h ∈(0,1/4), f(x,y)=∑1≤4i+4j+1≤naijx4i+1y4j and g(x,y)=∑1≤4i+4j+1≤nbijx4iy4j+1 are polynomials of x and y of degrees not exceeding n %K Hamilton系统 幂零奇点 Abel积分 Picard-Fuchs方程< %K br> %K Hamilton system nilpotent singularity Abel integral Picard-Fuchs equation %U http://sxzz.whu.edu.cn/sxzz/ch/reader/view_abstract.aspx?file_no=20170615&flag=1