%0 Journal Article %T 一种新的高分辨率遥感影像模糊监督分类方法<br>A New Method of Fuzzy Supervised Classification of High Resolution Remote Sensing Image %A 王春艳 %A 刘佳新 %A 徐爱功 %A 王玉 %A 隋心< %A br> %A WANG Chunyan %A LIU Jiaxin %A XU Aigong %A WANG Yu %A SUI Xin %J 武汉大学学报·信息科学版 %D 2018 %R 10.13203/j.whugis20150726 %X 针对高分辨率遥感影像分类中由于细节特征突出、同质区域光谱测度变异性增大所带来的像素类属的不确定性及模型的不确定性等造成的误分结果,提出一种基于模糊隶属函数的监督分类方法。对同质区域定义高斯隶属函数模型用来表征像素类属不确定性;模糊化该隶属函数参数建立影像模糊隶属函数,以建模同质区域光谱测度的不确定性;用训练样本在所有类别中的模糊隶属函数及原隶属函数(高斯隶属函数)中的隶属度为输入,建立模糊线性神经网络模型作为目标函数,实现分类决策。该算法和经典算法对World View-2全色合成影像及真实影像进行定性和定量分类实验,分类结果验证了文中方法具有更高的分类精度 %K 高分辨率遥感影像 %K 模糊隶属函数 %K 影像分类 %K 模糊神经网络 %K < %K br> %K high resolution remote sensing image %K fuzzy membership function %K image classification %K fuzzy neural networks %U http://ch.whu.edu.cn/CN/abstract/abstract6133.shtml