%0 Journal Article %T 顾及多因素影响的自适应反距离加权插值方法<br>An Adaptive Inverse-Distance Weighting Spatial Interpolation Method with the Consideration of Multiple Factors %A 樊子德 %A 李佳霖 %A 邓敏< %A br> %A FAN Zide %A LI Jialin %A DENG Min %J 武汉大学学报·信息科学版 %D 2016 %R 10.13203/j.whugis20140658 %X 空间插值算法旨在利用离散的观测点测量数据估算同一区域中未采样点的估计值,进而生成连续的空间表面模型。为了获得高精度的缺失数据估计值和高分辨率空间表面模型,提出了一种顾及多因素影响的自适应反距离加权插值算法(adaptive cluster gradient inverse-distance weighting, ACGIDW)。该算法以气象数据为例,顾及复杂地形因素、经纬度和高程对空间插值的影响,并根据采样点的空间分布模式对反距离加权算法中的距离衰减参数α进行自适应调整,提高了空间插值算法的精度和自适应性。采用两组实际气温和降水数据,运用交叉验证模型,对ACGIDW方法、其他反距离加权方法、普通克立金方法进行实验对比分析,验证了ACGIDW方法的优越性和可行性 %K 反距离加权插值 %K 距离衰减参数 %K 自适应 %K 多因素 %K < %K br> %K inverse-distance weighting %K distance-decay parameter %K adaptation %K multiple factors %U http://ch.whu.edu.cn/CN/abstract/abstract5473.shtml