%0 Journal Article %T 弹性介质Hamilton正则方程与声波方程辛几何算法<br>Hamiltonian canonical equations of elastic medium and symplectic geometric algorithm of acoustic wave equation %A 方刚 %A 栾锡武 %A 方建会< %A br> %A FANG Gang %A LUAN Xi-wu %A FANG Jian-hui %J 山东大学学报(理学版) %D 2016 %R 10.6040/j.issn.1671-9352.0.2016.232 %X 摘要: 建立弹性介质的Hamilton正则方程,把声波介质视为特殊的弹性介质,由弹性介质Hamilton方程导出声波介质地震波方程,对声波方程Hamilton化后给出其蛙跳格式的辛差分算法。将声波方程辛算法应用于二维情况下的地震波场正演数值模拟计算,并与常规的有限差分算法进行比较。结果表明,在地震波场正演数值模拟计算中辛几何算法比常规有限差分算法更具优越性。<br>Abstract: The Hamilton canonical equations is built for elastic medium. Taking the acoustic medium as a special kind of elastic medium, the acoustic wave equation can be derivate from elastic Hamilton canonical equations. The symplectic geometric algorithm with leapfrog schemes can be obtained with the Hamiltonian of acoustic wave equation. The symplectic geometric algorithm of acoustic wave equation can be applied for 2D seismic wave fields numerical modeling. Comparing with the conventional finite differences algorithm, the results indicated that the symplectic geometric algorithm is more advantageous in seismic wave fields numerical modeling %K 弹性介质 %K 辛几何算法 %K 声波方程 %K Hamiltion正则方程 %K < %K br> %K acoustic wave equation %K Hamilton canonical equations %K symplectic geometric algorithm %K elastic medium %U http://lxbwk.njournal.sdu.edu.cn/CN/10.6040/j.issn.1671-9352.0.2016.232