%0 Journal Article %T Halin图的邻和可区别全染色<br>Neighbor sum distinguishing total coloring of Halin graph %A 宋红杰 %A 巩相男 %A 潘文华 %A 徐常青< %A br> %A SONG Hong-jie %A GONG Xiang-nan %A PAN Wen-hua %A XU Chang-qing %J 山东大学学报(理学版) %D 2016 %R 10.6040/j.issn.1671-9352.0.2015.300 %X 摘要: 令[k]={1,2,…,k}, φ为图G的一个正常[k]-全染色。用f(v)表示点v及所有与其关联的边的颜色的加和,如果对任意边uv∈E(G),有f(u)≠f(v),则称该染色为图G的[k]-邻和可区别全染色。k的最小值称为图G的邻和可区别全色数,记为χ″Σ(G)。Pilsniak和Wozniak提出猜想:对任意简单图G,有χ″Σ(G)≤Δ(G)+3,其中Δ(G)表示图G的最大度。运用组合零点定理证明了该猜想对于任一Halin图成立。<br>Abstract: Let [k]={1,2,…,k}, a mapping φ is a proper [k]-total coloring of a graph G. Let f(v) denote the sum of the color of vertex v and the colors of the edges incident with v. A [k]-neighbor sum distinguishing total coloring of G is a [k]-total coloring of G such that for each edge uv∈E(G), f(u)≠f(v). Let χ″Σ(G) denote the smallest value k in such a coloring of G. Pilsniak and Wozniak conjectured that χ″Σ(G)≤Δ(G)+3 for any simple graph with maximum degree Δ(G). By using the Combinatorial Nullstellensatz, it shows that the conjecture holds for any Halin graph %K 邻和可区别全染色 %K Halin图 %K 组合零点定理 %K < %K br> %K Halin graph %K combinatorial nullstellensatz %K neighbor sum distinguishing total coloring %U http://lxbwk.njournal.sdu.edu.cn/CN/10.6040/j.issn.1671-9352.0.2015.300