%0 Journal Article %T 求解具有约束的l1-范数问题的神经网络模型<br>A neural network for solving l1-norm problems with constraints %A 李翠平 %A 高兴宝< %A br> %A LI Cui-ping %A GAO Xing-bao %J 山东大学学报(理学版) %D 2018 %R 10.6040/j.issn.1671-9352.0.2017.627 %X 摘要: 提出了一个解约束最小 l1-范数问题的单层神经网络模型。与已有神经网络模型相比,提出的模型所需神经元数少且层数少。通过引入 Lyapunov 函数,证明了该模型的稳定性和收敛性。数值试验结果表明所提出的模型具有良好的性能。<br>Abstract: This paper presents a one-layer neural network model for solving l1-norm problems with constraints. Compared with some existing neural network models, the proposed model needs fewer neurons and has a simpler structure. The stability and convergence of the proposed model are proved by introducing a Lyapunov function. Some simulation examples are used to illustrate its validity and transient behaviors %K < %K i> %K l< %K sub> %K < %K /i> %K 1< %K i> %K < %K /sub> %K < %K /i> %K -范数问题 %K 神经网络 %K 单层 %K 稳定性 %K < %K br> %K < %K i> %K l< %K /i> %K < %K sub> %K 1< %K /sub> %K -norm problem %K neural network %K one-layer %K stability %U http://lxbwk.njournal.sdu.edu.cn/CN/10.6040/j.issn.1671-9352.0.2017.627